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Abstract. It is shown that the ratios of certain triplet order parameters to magnetisation in 
honeycomb and diamond lattice Ising models can be easily calculated. Applying the 
star-triangle transformation reproduces the result obtained by Baxter on the triangular 
lattice. The new derivation indicates that exact solutions for triplet order parameters are 
of only limited use as checks on series expansions. 

1. Introduction 

There have recently been several investigations of three-spin order parameters in 
Ising models with two-spin interactions (Baxter 1975, Wood and Griffiths 1976, 
Barber 1976), largely as a parallel to investigations of two-spin order parameters in 
king models with three-spin interactions (Baxter et ul 1975). The most general result 
is that in two-spin interaction ferromagnetic Ising models, any three-spin expectation 
will vanish at the critical point with the same critical exponent as the magnetisation 
(Barber 1976). Special cases are the exact result of Baxter (1975) (for three neigh- 
bour spins on a triangular lattice) and the series expansion work of Wood and Griffiths 
(1976) on BCC and FCC lattices. On the triangular lattice the three-site order 
parameter is of interest as it is related to clustering properties of the Ising model as 
described in appendix 2. 

Baxter (1975) obtained the solution for M3 = (aooaloal 1) on the triangular lattice 
by using the method of Pfaffians to obtain the large-n limit of 

!aooaloa,lann)/(alla;tn) -* ( ~ o o ~ I o ~ I I ) / ( ~ I I )  = R. 
The main result of the present paper is that this ratio, R = M 3 / M  can be calculated in 
a simple direct manner and that on honeycomb and diamond lattices, similar ratios 
can be found for two distinct triplet order parameters. The method used is related to 
conditional probability characterisations of the Ising model used by statisticians and is 
also related to the method of partial generating functions used by Sykes et u1 (1973) to 
obtain series expansions. One consequence of this latter connection is that exact 
solutions for M3 and M cannot be regarded as being independent tests of series 
expansions obtained using the method of partial generating functions. 

The following section contains the algebraic form of the derivation of triplet 
order parameters. The connection with the method of partial generating functions 
is sketched briefly in the final section. Appendix 1 gives an interpretation of the 
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calculations in terms of probability distributions defined on Ising models. Appendix 2 
derives the connection between M3 and triangular lattice cluster properties. 

2. Calculation of tiplet order parameters 

The simplified derivation of triplet order parameters relies heavily on the fact that 
certain crystal lattices can be divided into two sublattices A and B such that A sites 
have only B sites as neighbours. This approach leads us to express the Hamiltonian of 
the honeycomb lattice king model as 

E H =  C E H ( ~ )  
r e A  

= 1 ( L l c ( r ) a ( r  + a )  + Lz(+(r)a(r  + b )  + L3a(r )a ( r  + c ) ) .  (1) 
r E A  

To calculate spin expectation values we use the expressions 

~ ( { a ) ) )  = z-'C f({aI) exp( - E H / ~ T )  (2) 
{U 1 

where the sum is over all configurations of all spins a ( r )  in the system ( a ( r )  = i 1). 
If one focuses attention on a particular A site, ro and its three neighbours and only 

considers expectations of functions of the four spin variables (+(ro), u(ro+a), 
a(ro  + b ) ,  m(r0 + c ) ,  then the sum in (2) can be rearranged giving 

(f({u))> = 1 C 1 1 exp(-EH(rO)/kT)/G(rO) 
4 r o )  u(ro+e) u( ro+b)  u ( r o + c )  

X F(&o + a ) ,  a(r0 + b) ,  a h  + c ) ) ]  (3 ) 
where F and G(ro)  are functions of a(rO + a ) ,  c ( r o  + b) ,  a (ro  + c )  given by 

(4) 

where the sum C' is over all configurations of all spins except a(ro)  and its neighbours. 
The various terms in expressions (2), (3) and ( 5 )  have natural interpretations in 

terms of probability distributions. This aspect of the work is discussed in appendix 1. 
F is actually independent of a(r0) as can be seen by inspection of equations (4) and 

(5 ) .  The most general possible form for F is 

Aa(r0 + a )  + B d r o  + b )  + C d r 0  + c )  + Da(r0 + a)a(ro + b)a(ro  + c )  

+ g ~ + g ~ a ( r ~ + a ) a ( r ~ + b ) + g ~ a ( r ~ + a ) a ~ ~ ~ + c )  
+ g d - 0  + b)a(ro  + c ) .  

Substituting this form of F into (3) gives 

(a(ro  + a ) )  = SA 

(u(ro + 6 ) )  = 8 8  

(a ( ro  + c ) )  = SC 
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(a(ro)) = ( 2 0  - 1)(2A + 2B + 2C + 2 0 )  + (2p1-  1) (  - 2 A  + 2B + 2C - 2 0 )  

+ (2p2-  l ) ( 2 A  -2B + 2C - 2 0 )  + ( 2 p 3 -  1)( + 2A + 2B -2C - 2 0 )  
( 7 4  

(80 1 (a(ro  + a)a(ro i- b)a(ro  + c ) )  = 8 0  

(a(ro  + a)a ( ro  +b)a(ro))  = (2a - 1)(2A + 2B + 2C + 2 0 )  

+ (2p1- 1)(-2A + 2B + 2 C - 2 0 )  - (2p2- 1)(2A -2B + 2 C - 2 0 )  

- ( 2 p 3  - 1)( + 2A + 2B - 2C - 2 0 )  

(Y = 1/(1 +z1Zzz3) (9a 1 
P1 = zi/(zi + Z ~ Z ~ Z ~ / Z ~ ~  (9b) 

z i  = expi - 2Li/kT). (9c) 

If the four single-spin expectations are known then equations (7a )-(7d) can be 
regarded as four simultaneous equations in the unknowns A, B, C, 0, and are 
applicable to any group of four spins for which E&) as given by ( 1 )  is the only 
interaction between a(ro)  and the rest of the system. If we consider the thermodynamic 
limit of a honeycomb lattice then we can put 

((+(ro)j = (a(ro  + a ) )  = (a(ro + b ) )  = ( a h  + c ) )  = M 

whence A = B = C. 
Similarly 

(a(ro + a)a(ro  + b)a(ro  + c ) )  = M3 ( l o a )  

and because A = B = C we have the somewhat surprising result that 

In other words, even on anisotropic honeycomb lattices, triplet order parameters of 
the forms given in ( l o b )  do not show any anisotropy. 

Solving the simultaneous equations gives 

R = M3/M = (p + 3a - 5) / (p  - (Y - 1 )  ( 1 1 a )  

R * = M z / M  = (Sap - 5p - 15a + 9) /3(p  - (Y - 1 )  (1 1b) 

@ = P l + p 2 + p 3 .  (11c) 

where 

R can also be written as 

3 tanh(K1 + K2 + K 3 )  + tanh(K1 + K2 - K 3 )  

tanh(K1 + K2 - K 3 )  + tanh(K1 - K 2  + K 3 )  ( 1 2 )  

K, = Li/kT. (13) 

+ tanh(K1 - K 2  + K 3 )  + tanh( - K1 + K2 + K 3 )  + 4 

+ tanh( - K1 + K 2  + K 3 )  - tanh(Kl + K 2  + K 3 )  

R =  

There is a well known transformation (the star-triangle transformation) connecting 
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honeycomb lattice Ising models to triangular lattice Ising models. In terms of proba- 
bility distributions it corresponds to performing a partial sum over the probability 
distribution for a honeycomb lattice Ising model and showing that the result is the 
probability distribution for a triangular lattice Ising model. The sum is over all 
configurations of A sublattice spins so that any expectation of B sublattice spins such 
as M = (a(ro + a ) )  or M3 will be left invariant. The three triangular lattice inter- 
actions J1, J2,  J3  are given by 

sinh2(2Ji/kT) = 4(S:SiS:)/A4S2 (14a) 

A4 = 4(S: +Si + S :  + 2CIC2C3 + 2) (14b) 

where 

Si = sinh(2Li/kT) 

Ci = cosh(2Li/kT) 

(see for example Syozi 1972). 

readily accomplished by using the form 
The conversion of the expression for R to triangular lattice parameters is most 

c1+ C2C3 c, + C1C3 + c, + c,c2 - s: + s: + s: + 2CIC,C3 + 2 
s1s3 s1s2 SlS2S3 

R =  + 
s2s3 

The expression for R given by Baxter (1975) can be regained after a moderate 
amount of algebra. 

The whole derivation can be repeated for lattices with two sublattices and a 
coordination number of four. 

The factor F has the form 

F = A l a ( r o + a )  + A 2 a ( r o + 6 ) + A 3 a ( r ~ + c )  + A 4 a ( r 0 + d )  

+ a(ro + a)a(ro + 6)(+(ro + c )a ( ro  + d )  

x (Dlcr(ro + a )  + D2u(r0 + 6 )  + 03a(r0 + c )  +D4a(ro + d ) )  

+ even-spin terms. (16) 
The simultaneous equations are 

(a(ro +a)>  = 16A (and 3 other similar equations) (17a) 

(a(r0 + a)u(ro + 6)a ( ro  + c ) )  = 16D4 (and 3 similar equations) (17b) 

and, taking the limit so that we can put Ai = A  and Di = D  and considering only 
isotropic lattices: 

(u(ro)) = (2a - 1)(8A + 8 0 )  + (2p - 4)(4A - 4 0 )  

(a(ro)a(ro +a)a(ro  + 6 ) )  = (2a - 1)(8A + 8 0 )  

a = 1/(1 + U 2 )  (18a) 

(17c) 

( 1 7 4  
where 

p = 1/(1 + U )  

U = exp( - 4pJ)  
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which leads to the solutions 

M3/M = (5  - 2a -@)/(2a - p  + 1) = (1 - 3~ - U’ - 5u3)/(1 - u ) ~  

M:/M = (2a - 1)(3 - @)/(2a - p + 1) = (1 + U ) (  1 - 3 ~ ) / (  1 - U)’. 

( 1 9 ~ )  

(196) 

Results (19a) and (19b) apply to both square and diamond lattice Ising models. 
For the square lattice the form of M f  is independent of which two neighbours of ro 
are indexed by a and b, so that we have 

The solution for M;/M given by (196) agrees with the expression for (uoouo1ull) 
obtained by Baxter (1975) by equating M f  on the square lattice to M3 on a triangular 
lattice with one interaction set to zero. Pink (1968) has calculated ( ~ 0 ~ c r ~ 1 ( + ~ 2 )  for the 
square lattice. His expression for this correlation appears to differ from (19b), 
incorrectly including a factor of $. 

The calculations of M 3 / M  and M:/M for the diamond lattice are quite surprising 
as none of M:, M3,  M have been calculated exactly in this system. 

3. Conclusion 

As mentioned in the introduction it is also possible to derive R for the triangular 
lattice using the method of partial generating functions. 

Sykes et a1 (1973) showed how the partition function for the honeycomb Ising 
model in a field H can be equated to the partition function of an king model in a field 
H’ with a nearest-neighbour interaction J and a three-site interaction J3,  i.e. 

where explicit expressions for H’, J ,  J3 as functions of L, H are known. 
Differentiating with respect to H gives 

aH’ a aJ a a~~ a MH = +- ---In Z t r i  +- . -In Zti +- . -In Ztri. aH ’dH’ aH d J  aH aJ, 

In zero field, aJ/aH vanishes, J3 vanishes and we have MH = Mtri by the star-triangle 
transformation so that 

aH’ M .=-M .+- 
“I dH “I dH 

from which M3/Mt,i can be calculated. 
The fact that M 3 / M  can be expressed purely in terms of the transformation used in 

setting up the method of partial generating functions means that M3 and M cannot be 
regarded as independent checks of series expansions obtained by this method. To be 
more precise, if full use is made of the sublattice symmetry either as a check or as 
‘input’ information for the expansion technique (Sykes et a1 1975) M and M3 can be 
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regarded as independent checks on the algebraic manipulation but are not in- 
dependent checks on the input combinatorial information. 

It appears that generalisations of these methods to other models will not produce 
results as simple as those obtained here. Relations for even-spin expectations do not 
simplify because there is no variable common to both sublattices which can take on 
the role of M.  Extensions to other models such as the Potts models are unlikely to be 
simple because of the many different order parameters possible (see, for example, the 
number of different terms involved in partial generating functions, given by Enting 
1974a, b). 

Appendix 1. Probability distributions on Ising models 

The basis of statistical mechanics is that expressions 2-' exp( - E / k T )  are of the 
correct form of joint probability distribution, Gibbs probability distributions, for 
calculating thermal averages. The calculations presented in § 2 are based on the 
possibilityof factorising this probability distribution into a probability for (r(r0 + a) ,  
c+(ro+ b) ,  u(ro  + c )  and a conditional probability of (r(ro) given its three neighbours. 
These conditional probabilities are given by 

which takes values a,  1 - a, pi, 1 -p i .  
There is a converse result that Gibbs probability distributions are the most general 

self-consistent distributions that can occur in a system defined by a conditional 
probability structure, This result has been proved (to varying degrees of generality) by 
Dobruschin (1968), Spitzer (1971), Sherman (1973), Grimmet (1973), Preston 
(1973), Moussouris (1974) and others. 

One point that should be emphasised is the importance of the symmetry constraint 
on the conditional probabilities. Besag (1974) has considered conditional probability 
structures on lattices that could be regarded as completely asymmetric. The con- 
ditional probabilities are associated with a partial ordering of lattice sites so that 
probabilities for a given site depend only on predecessor sites. These models have 
been shown to produce probability distributions equivalent to those of more general 
Ising models (Enting 1977a). (See also Welberry and Galbraith (1973, 1975), Wel- 
berry (1977a, b) for further work on these systems.) Although Enting (1977b) used 
these 'one-way' models or growth models to investigate the honeycomb-triangle code 
system, the probability distributions occurring coincide with the zero-field dis- 
tributions used in 09 2 and 3 only at infinite temperature. 

There is however a closer connection between these growth models and the 
conditional probability formulation of the honeycomb Ising model. If one sets up a 
hexagonal close packed lattice with triangular lattice layers one can define a three- 
dimensional growth model using the order of layers to define the required partial 
ordering of sites. If one uses probabilities of the form (A. l )  as the conditional 
probabilities of the growth model then pairs of layers of the HCP lattice will have 
two-dimensional honeycomb Ising model distributions of spins. It was the observation 
of Ising-like distributions in layers of three-dimensional growth models by Welberry 
(private communication) and discussions of the connections between layers which 
suggested the possibility of calculating M3/M.  
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Appendix 2 

The connection between triplet order parameters and clustering properties of trian- 
gular Ising models follow: directly from the work of Sykes et a1 (1975). Put 

1 
M = - 

N C  

( N  - 2n) exp( - E / k T ) / Z  

where N is the number of sites on the lattice, c stands for configuration and n is the 
number of down spins in a configuration. 

1 
2N M3 = - x ( 2 N  - 12n + 86 - 8 t )  exp( - E / k T ) / Z  

where b is the number of edges on the lattice with both ends ‘down’ spins and t is the 
number of elementary triangles of down spins. 

We can define a cluster order parameter, A, as the difference between the number 
of clusters of ‘down’ spins and the number of clusters of ‘up’ spins. The up clusters will 
occur as holes in down clusters. Normalising gives 

(A.4) 
1 

N 
A = - c ( c  - h )  exp( - E/kT) /Z .  

Sykes et a1 (1975) show geometrically that 

whence 
c - h  = t - b  + 12 

0 = (M - M3)/4. 
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